Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243185

RESUMO

Taraxacum mongolicum is a perennial herbaceous plant in the family Asteraceae, with a high edible and medicinal value and is widely planted in China. In August 2022, leaf spots were found on T. mongolicum in Tianjiazhai Town, Xining City, Qinghai Province, China (36°27'17.65″N, 101°47'19.65E, elevation: 2,408 m). The plants exhibited round or irregular brown spots, and the centers of some of the spots were gray (Fig. S1A). An investigation was performed over a hectare area, and the incidence of leaf spot reached 15%-30%, seriously affecting the quality and yield of T. mongolicum. Eleven T. mongolicum leaf spot samples were collected. To isolate the pathogenic fungus, approximately 0.5 cm×0.5 cm pieces of tissues were obtained using sterile scissors from the junction of infected and healthy tissues. The symptomatic leaves were surface-disinfected with 3% NaClO for 1.5 min and washed three times with sterile water. The disinfected pieces were dried and placed on water agar plates in an incubator for 2 days at 25°C. Subsequently, the leaf surface exhibited conidiophores and conidia. Eleven isolates were obtained by single spore isolation. The sparse aerial mycelia were dark grey to black brown in color on potato dextrose agar (PDA) (Fig. S2A), and produced dark, multi-septate conidia with 7-11 transverse septa and 1-2 longitudinal septa (Fig. S2C). Conidia with one or two beaks were long-ovoid, with an average length and width of 103.4 × 21.2 µm, and 80.7 × 3.9 µm of the beaks. One hundred and ten conidia were measured. The identification of 11 isolates was confirmed by multilocus sequence analyses of the internal transcribed spacer of ribosomal DNA (rDNA ITS) (White et al. 1990), and the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (Xu et al. 2022), actin (ACT) (Yang et al. 2020), histone 3 (HIS3) (Zheng et al. 2015), translation elongation factor 1-α (TEF1-α) (Carbone. 1999), and the second largest subunit of RNA polymerase II (RPB2) (Liu et al. 1999) genes. The sequences of all the isolates were deposited in Genbank (NCBI Accession Nos. ITS: OR105029-OR105039, ACT: OR135220-OR135230, GAPDH: OR135231-OR135241, HIS3: OR122992-OR123002, TEF1-α: PP055972-PP055982, and RPB2: PP055983-PP055993), and the sequence similarity of ITS, ACT, GAPDH, HIS3,TEF1-α and RPB2 were 100%, 98%, 100%, 99%, 100%, and 99% to the sequences of Alternaria solani, respectively. Combined sequences of ITS, GAPDH, TEF1-α, and RPB2 genes were concatenated and a maximum parsimony tree was constructed with PAUP* v. 4.0 alpha. The results indicated that 11 isolates were clustered together with A. solani (Fig. S2D). Therefore, 11 isolates were identified as A. solani based on their morphological and molecular characteristics. Eleven isolates were inoculated on their host to perform Koch's postulates. The isolates were grown on PDA for six days. Healthy one month old T. mongolicum seedlings were planted in 10 cm flowerpots (Fig. S1B) or the seedlings were moved to Petri dish (Fig. S1C), and their leaves were inoculated with 5 mL of hyphae suspension by smearing method. In addition, seedlings of the same age were treated with sterile water to serve as the control. The inoculated seedlings were moved into an artificial climatic box at 25℃, relative humidity was 70%, with 12 h light/12 h dark condition. Totally 80 seedlings were inoculated with isolates and 15 were used as the control. After 7 days, similar symptoms were observed on the plants inoculated with isolates, while control plants did not produce symptoms. The assays were conducted three times. Furthermore, isolates were re-isolated from the symptomatic leaves, and the colonial morphology was the same as the original isolates (Fig S2 A and B). The recovered isolates were identified as A. solani by amplifying and sequencing a portion of the HIS3 gene. Alternaria solani has been previously reported to cause early blight of potato and other Solanum crops (van der Waals et al. 2004; Zheng et al. 2015). To our knowledge, this is the first report of A. solani causing leaf spot of T. mongolicum in China. This disease must be considered in management practices, and our finding provided a basis for disease prevention and management.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...